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Chapter 4
TRANSIENT HEAT CONDUCTION



LUMPED SYSTEM ANALYSIS

Interior temperature of some
bodies remains essentially
uniform at all times during a
heat transfer process.

The temperature of such
bodies can be taken to be a
function of time only, T(t).

Heat transfer analysis that
utilizes this idealization is
known as lumped system
analysis.

A small copper ball
can be modeled as a
lumped system, but
a roast beef cannot.
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The temperature of a lumped system
approaches the environment
temperature as time gets larger.

This equation enables us to
determine the temperature
T(t) of a body at time t, or
alternatively, the time t
required for the temperature
to reach a specified value T(t).

The temperature of a body
approaches the ambient
temperature T_ exponentially.

The temperature of the body
changes rapidly at the
beginning, but rather slowly
later on. A large value of b
Indicates that the body
approaches the environment
temperature in a short time



(W) The rate of convection heat
transfer between the body
and its environment at time t

O(t) = hA[T(t) — T,]

Q = mc,[T(1) — T}] (kJ) The total amount of heat transfer
between the body and the surrounding
medium over the time intervalt =0 to t

O = mc(T. — T) (kJ) The maximum heat transfer between
<~ max P e i - . )
the body and its surroundings
=0 k [ — o
T,
T T,
T T,

Heat transfer to or froma 1; 7, ¢
body reaches its T. o 1; 7. I«
maximum value when the
body reaches the 0 = O e, (T~ T.)
environment temperature. max .



Criteria for Lumped System Analysis

Convection V' Characteristic
\ , L.= A, length
h
o Conduction v, T . L. Biot number
'!\,
SOLID Lumped system analysis
P BODY % IS applicable if

¥ 4 \ Bi < 0.1

When Bi < 0.1, the temperatures

t within the body relative to the
surroundings (i.e., T —=T_) remain
Bj = feat convection within 5 percent of each other.

" heat conduction

h AT Convection at the surface of the body
- k/IL.AT Conduction within the body

Bi

L./k Conduction resistance within the body
[/h  Convection resistance at the surface of the body

Bi =



Jean-Baptiste Biot (1774-1862) was a
French physicist, astronomer, and
mathematician born in Paris, France.
Although younger, Biot worked on the
analysis of heat conduction even earlier
than Fourier did (1802 or 1803) and
attempted, unsuccessfully, to deal with
the problem of incorporating external
convection effects in heat conduction
analysis. Fourier read Biot’s work and
by 1807 had determined for himself
how to solve the elusive problem. In
1804, Biot accompanied Gay Lussac
on the first balloon ascent undertaken
for scientific purposes. In 1820, with
Felix Savart, he discovered the law
known as “Biot and Savart’s Law.” He
was especially interested in questions
relating to the polarization of light, and
for his achievements in this field he was
awarded the Rumford Medal of the Royal
Society in 1840. The dimensionless
Biot number (Bi) used in transient heat
transfer calculations i1s named after him.



h=15W/m2-°C

T,=20°C

Spherical
copper
ball

k=401 W/m-°C

Small bodies with high
thermal conductivities
and low convection
coefficients are most
likely to satisfy the
criterion for lumped
system analysis.
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hL, 15 % 0.02

Bi =

— 0.00075 < 0.1 Convection

k 401

h = 2000 W/m?2-°C
When the convection coefficient h is
high and k is low, large temperature
differences occur between the inner
and outer regions of a large solid.

Analogy between heat
transfer to a solid and g
passenger traffic to an island.




: EXAMPLE 4-1 Temperature Measurement by Thermocouples

: The temperature of a gas stream is to be measured by a thermocouple whose
, junction can be approximated as a 1-mm-diameter sphere, as shown in Fig.
| 4-9. The properties of the junction are k = 35 W/m - °C, p = 8500 kg/m?3, and
I C, = 320 J/kg - °C, and the convection heat transfer coefficient between the
I junction and the gas is h = 210 W/m? - °C. Determine how long it will take for

I the thermocouple to read 99 percent of the initial temperature difference.
|

Thermocouple
wire

Gas
T..h — Junction
D=1 mm
1)
FIGURE 4-9

Schematic for Example 4-1.



SOLUTION The temperature of a gas stream is to be measured by a thermo-
couple. The time it takes to register 99 percent of the initial AT is to be
determined.

Assumptions 1 The junction is spherical in shape with a diameter of D =
0.001 m. 2 The thermal properties of the junction and the heat transfer coeffi-
cient are constant. 3 Radiation effects are negligible.

Properties The properties of the junction are given in the problem statement.
Analysis The characteristic length of the junction is

D= %{D.{}Dl m) = 1.67 X 104 m

Then the Biot number becomes

hL. (210 W/m? - °C)(1.67 X 10~*m)
k 35 W/m - °C

Bi = = 0.001 < 0.1

Therefore, lumped system analysis is applicable, and the error involved in this
approximation is negligible.

In order to read 99 percent of the initial temperature difference T, — T,
between the junction and the gas, we must have

T(t)—T.
T-17. Y
For example, when 7, = 0°C and 7, = 100°C, a thermocouple is considered to

have read 99 percent of this applied temperature difference when its reading
indicates T(t) = 99°C.
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The value of the exponent b is

_ hA, __h _ 210 W/m? - °C
pC,V  pC,L. (8500 kg/m?)(320 J/kg - °C)(1.67 X 10~* m)

b = 04625

We now substitute these values into Eq. 4-4 and obtain

ra)-1. _ L, (0.462 5 "y
ﬁ—é‘ — 001 =e¢e :

which yields

t=10s

Therefore, we must wait at least 10 s for the temperature of the thermocouple
junction to approach within 1 percent of the initial junction-gas temperature
difference.

Discussion MNote that conduction through the wires and radiation exchange
with the surrounding surfaces will affect the result, and should be considered in
a more refined analysis.
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: EXAMPLE 4-2 Predicting the Time of Death

: A person is found dead at 5 pm in a room whose temperature is 20°C. The tem-
| perature of the body is measured to be 25°C when found, and the heat trans-
| fer coefficient is estimated to be h = 8 W/m? - °C. Modeling the body as a
| 30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that per-
I son (Fig. 4-10).

FIGURE 4-10

Schematic for Example 4-2.
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SOLUTION A body is found while still warm. The time of death is to be
estimated.

Assumptions 1 The body can be modeled as a 30-cm-diameter, 1.70-m-long
cylinder. 2 The thermal properties of the body and the heat transfer coefficient
are constant. 3 The radiation effects are negligible. 4 The person was healthy(!)
when he or she died with a body temperature of 37°C.

Properties The average human body is 72 percent water by mass, and thus we
can assume the body to have the properties of water at the average temperature
of (37 + 25)/2 = 31°C; k = 0.617 W/m - °C, p = 996 kg/m?, and C, = 4178
J/kg - °C (Table A-9).

Analysis The characteristic length of the body is

= 0.0689 m

4 wr2L 7(0.15 m)*(1.7 m)

" 2mr, L+ 2mr2 2m(0.15 m)(1.7 m) + 2m(0.15 m)?

Then the Biot number becomes

hL, (8 W/m? - °C)(0.0689 m)

== 0.617 W/m - °C

= 0.89 = 0.1
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Therefore, lumped system analysis is not applicable. However, we can still use
it to get a “rough™ estimate of the time of death. The exponent b in this case is

b=hA5= h 8 W/m? - °C
pC,V  pC,L. (996 kg/m?)(4178 J/kg - °C)(0.0689 m)
=279 X 10 55!

We now substitute these values into Eq. 4-4,

ra) —1I. — o b , 22 —20_ p—(279 x 1035~y
T; —T. ' " 37-20

which yields
t=43860s=122h
Therefore, as a rough estimate, the person died about 12 h before the body was

found, and thus the time of death is 5 am. This example demonstrates how to
obtain “ball park™ values using a simple analysis.
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TRANSIENT HEAT CONDUCTION IN LARGE PLANE

WALLS, LONG CYLINDERS, AND SPHERES WITH
SPATIAL EFFECTS . |

“' N =0
We will consider the variation of temperature ,h\\
with time and position in one-dimensional r_r“
problems such as those associated with a large T, . A
plane wall, a long cylinder, and a sphere. |

0 I X

d Initially T,
T Initially r. 1| Inidallyt | 7, Ir=T, I
h r=1, h h =1 h .

OpbD—eo——»

(a) A large plane wall

00— r

(b) A long cylinder

Transient temperature profiles in a
plane wall exposed to convection
from its surfaces for T, >T,.

T,

h
Schematic of the
r, Simple geometries in

which heat transfer is
one-dimensional. 15



Nondimensionalized One-Dimensional Transient
Conduction Problem

T. Initially
T=T,

(a) A large plane wall

e | 3T 19T
Differential equation: —5 =——
o0xX" a of
Boundary conditions:
a7(0, 1) dT(L. 1)
: =0 and —k— = h|T(L, 1) — T.]
dx dx
[nitial condition: I(x,0) =T,

a =klpc, x = /L 6(x, 1) =[Tx, 1) — T[T, — T,]

Dimensionless differential equation: ——

Dimensionless BC's:

Dimensionless initial condition:

920 L* o a0(1, 1) AL
7 = = — and = —6(1, 1
axX: o« ot ane d k (L)
9°0 _ a0
oxX: ot
36(0, 7) 96(1, )
= = —Bif(l. T
X 0 and X Bif(1, )

H(X.0) =1 16



(X, 1) = Dimensionless temperature
Tx- - T_,'
X : : : :
X = I Dimensionless distance from the center
. _hL o | o .
Bi = T Dimensionless heat transfer coefficient (Biot number)
ol : : : .
T = 2 = Fo Dimensionless time (Fourier number)

(a) Original heat conduction problem:
PT_ 10T
ax2 o« ar’

aT(0, ¢ dT(L, t

(0, 1) 0 —k (L. 1)
dx ]
T'=Fx Ltk o hT)

Tx,0) =T,

= h[T(L, 1) — T..]

(b) Nondimensionalized problem: Nondimensionalization
0 an reduces the number of
2 o X O=1 |n_deper_1dent varla_bles in one-
36(0. 7) 30(1. 7) dimensional transient
5 = 0. ax _— —Biw(.7)  conduction problems from 8 to
3, offering great convenience
0 =fiX.Bi, 7 in the presentation of results.
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TABLE 4-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r,and a sphere of radius r, subjected to convention from
all surfaces.”

Geometry Solution A,'s are the roots of
- 4 sin A 2
Plane wall 0= ——— e~ M cos (A /L | tan 1 5 Bi
; 2A + sin(2A,) cos (Ax/L) n 4
. . 2 -JI {An} 2 -u'ir {r;l”}
Cylinder 0= > —— S e M Ty (Ar/r,) A, — = Bi
:z=J}‘:‘! v'rﬁ (‘}l:z} +J]-{‘?ln} "Iﬂ{’}ln}
= d(sin A, — A, COS A,) .. Sin(A,x/L)
Sphere 0= e M | — A, cot A, = Bi
P ; 2, — sin(2\,) Ax/L nEOH A

*Here § = (T — TAT, — T.) is the dimensionless temperature, Bi = hL/ or hr, /k is the Biot number, Fo = 7 = ar/ L®
or ar / 12 is the Fourier number, and J, and J; are the Bessel functions of the first kind whose values are given in Table 4-3.
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9” — An E_AEIT CDS()’L” X)

A,

4 sin A,

T 2A, + sin(2A,)

A, tan A, = Bi

ForBi=5 X=1.,andt=0.2:

n A, A 6.

| 1.3138 1.2402 0.22321
2 4.0336 —0.3442 0.00835
3 6.9096 0.1588 0.00001
+ 9.8928 —0.876 0.00000

The analytical solutions of
transient conduction problems
typically involve infinite series,
and thus the evaluation of an
Infinite number of terms to
determine the temperature at a
specified location and time.

The term 1n the series solution of
transient conduction problems decline
rapidly as n and thus A, increases
because of the exponential decay
function with the exponent —A 7.
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Approximate Analytical and Graphical Solutions

The terms in the series solutions converge rapidly with increasing time,
and for t > 0.2, keeping the first term and neglecting all the remaining
terms in the series results in an error under 2 percent.

Solution with one-term approximation

T(x, 1) — T,
Plane wall: 0 gt = T —T
o T(r,t)—T.
Cylinder: HC}-’] - T T
| I(r,t)— T,
Sphere: Ospn = T.—T.

Center of plane wall (x = 0):
Center of cylinder (r = 0):

Center of sphere (r = 0):

= A]f’_‘ﬁ " cos (A/L),

= A

A7 Jy(\rir,),

Arir,
I, — T,
0. war = ;_ T.
T, — T,
0. eyl = TT —T.
.Tﬂ o TI

6 =
0.sph = T T

23 SIN(A /1)

T>0.2

T >0.2

T>0.2

0= = Y, {__J—.-ijr

= =Ae M7

— .:4 ] ()_‘hl‘i’ r
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TABLE 4-2

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hil/k
for a plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of

TABLE 4-3

The zeroth- and first-order Bessel
functions of the first kind

radius r,)
Plane Wall Cylinder Sphere

Bi Ay A, A A, Ay A,
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04  0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06  0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1450 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
oo 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000

! Jaln7) Jy(n)
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8453 0.3688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.7196 0.4709
1.2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
1.7 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 —0.4708
2.8 —0.1850 —0.4097
3.0 —0.2601 —0.3391
3.2 —0.3202 —-0.2613
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(a) Midplane temperature
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The dimensionless temperatures anywhere in a plane wall,
cylinder, and sphere are related to the center temperature by

= cos|— ), =Jo| —J. and =
00, wall L / 00, sph AT,

o

90, cyl

(a) Finite convection coefficient (b) Infinite convection coefficient

The specified surface temperature corresponds to the case of convection
to an environment at T_ with with a convection coefficient h that is infinite.

h — o
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Omax = me,(T, = T;) = pVe (T, — T))

)
Plane wall: ( s ) —
m 1%,/ wall
Cylinder: (an) =1 —
Sphere: ( ) =1 —
nn sph

Q]'.I‘.I ax

h
T,
() Maximum heat transfer (t — )

The fraction of total heat transfer
Q/Qax UP 10 a specified time tis
determined using the Gréber charts.

0 [pelTen—Tlav 1|

K] _ 2| (1 —&hdV
( ) J Qmax J'ri':tj?{ Tx - E}U Vv
sin A, 0= | pe,t10n0) = Tav
. - - = W X Iy — £«
00, wall Y W
1
Y Ji(A)
=0, cvl
Cy .-')'l.]
0, sph 3
[ /EL]
0
=10
h
T,
Bi= 0
ot _pir = O
(Gréber chart)
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The physical significance of the Fourier number

The rate at which heat 1s conducted
at KkL* (1/LYy AT across L of a body of volume L’
2 pc, L3t AT ~ The rate at which heat is stored
in a body of volume L’

T

 The Fourier number is a L
measure of heat y: I
conducted through a body |
relative to heat stored. :
c A Iarge value of the Q : Qmmluclccl

Fourier number indicates o S

faster propagation of heat ,
through a body. LN ———

e
/' *
_ . ,// Qstored /
Fourier number attime t

can be viewed as the Q
ratio of the rate of heat Fourier number: T a,{ _ c+{w.1t|l|u|¢:t|
conducted to the rate of L* O, rored
heat stored at that time. storec
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| S
y EXAMPLE 4-3 Boiling Eggs

: An ordinary egg can be approximated as a 5-cm-diameter sphere (Fig. 4-19).
; The egg is initially at a uniform temperature of 5°C and is dropped into boil-
g ing water at 95°C. Taking the convection heat transfer coefficient to be
1 h= 1200 W/m? - °C, determine how long it will take for the center of the egg
I to reach 70°C.

h = 1200 W/m2.°C
T, = 95°C

FIGURE 4-19

Schematic for Example 4-3.




SOLUTION An egg is cooked in boiling water. The cooking time of the egg is to
be determined.

Assumptions 1 The egg is spherical in shape with a radius of r; = 2.5 cm.
2 Heat conduction in the egg is one-dimensional because of thermal symmetry
about the midpoint. 3 The thermal properties of the egg and the heat transfer
coefficient are constant. 4 The Fourier number is 7 > 0.2 so that the one-term
approximate solutions are applicable.

Properties The water content of eggs is about 74 percent, and thus the ther-
mal conductivity and diffusivity of eggs can be approximated by those of water
at the average temperature of (5 + 70)/2 = 37.5°C; k= 0.627 W/m - °C and
a = kipC, = 0.151 X 10-° m?/s (Table A-9).

Analysis The temperature within the egg varies with radial distance as well as
time, and the temperature at a specified location at a given time can be deter-
mined from the Heisler charts or the one-term solutions. Here we will use the
latter to demonstrate their use. The Biot number for this problem is

g hro _ (1200 Wim? - °0)0.025m) _ o
Tk T 0.627 W/m - °C -

which is much greater than 0.1, and thus the lumped system analysis is not
applicable. The coefficients k; and A, for a sphere corresponding to this Bi are,
from Table 4-1,

A, = 30753, A, =1.9958

Substituting these and other values into Eq. 4-15 and solving for T gives

T,—T.
Tr' - Tx

70 — 95

— = 1.9958¢ GO, 1 =0.209

2
=Ae N —

which is greater than 0.2, and thus the one-term solution is applicable with an
error of less than 2 percent. Then the cooking time is determined from the de-
finition of the Fourier number to be

e 7 (0.209)(0.025 m)?
T oa T 0.151 X 105 ms

= 865 s = 14.4 min

Therefore, it will take about 15 min for the center of the egg to be heated from
5°C to 70°C.

Discussion Note that the Biot number in lumped system analysis was defined
differently as Bi = hL./k = h(r/3)/k. However, either definition can be used in
determining the applicability of the lumped system analysis unless Bi = 0.1.

29



: EXAMPLE 44 Heating of Large Brass Plates in an Oven

"In a production facility, large brass plates of 4 cm thickness that are initially at
, @ uniform temperature of 20°C are heated by passing them through an oven
| that is maintained at 500°C (Fig. 4-20). The plates remain in the oven for a
| period of 7 min. Taking the combined convection and radiation heat transfer
| coefficient to be h = 120 W/m? - °C, determine the surface temperature of the
: plates when they come out of the oven.

T, = 500°C
h =120 W/m2.°C

"_/"
- 2L=4cm
Brass
plate
T!. =20°C

FIGURE 4-20
Schematic for Example 4-4.
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SOLUTION Large brass plates are heated in an oven. The surface temperature
of the plates leaving the oven is to be determined.

Assumptions 1 Heat conduction in the plate is one-dimensional since the plate
is large relative to its thickness and there is thermal symmetry about the center
plane. 2 The thermal properties of the plate and the heat transfer coefficient are
constant. 3 The Fourier number is T = 0.2 so that the one-term approximate so-
lutions are applicable.

Properties The properties of brass at room temperature are k = 110 W/m - °C,
p = 8530 kg/m?, C, = 380 J/kg - °C, and a = 33.9 X 10-° m?s (Table A-3).
More accurate results are obtained by using properties at average temperature.
Analysis The temperature at a specified location at a given time can be de-
termined from the Heisler charts or one-term solutions. Here we will use the
charts to demonstrate their use. Noting that the half-thickness of the plate is
L = 0.02 m, from Fig. 4-13 we have

1 k 100 W/m - °C

Bi AL (120 W/m? - °C)0.02 m) T,—T. 0.46
_at (339X 10~% m%/s)(7 *x 60 s) _ e T.— T,
T2 (0.02 m)y? = -
Also,
1 _ Kk _
Bi AL P8 o
E—é—l T Tx=0.99
L L
Therefore,
T—T., T—T1T.T7T,—T.
T,—T. T, T.T,—T. 0.46 X 0.99 = 0.455
and

T=T.+0455T; — T..) = 500 + 0.455(20 — 500) = 282°C

Therefore, the surface temperature of the plates will be 282°C when they leave
the oven.

Discussion We notice that the Biot number in this case is Bi = 1/45.8 =
0.022, which is much less than 0.1. Therefore, we expect the lumped system
analysis to be applicable. This is also evident from (T — T_)/(T, — T.) = 0.99,
which indicates that the temperatures at the center and the surface of the plate
relative to the surrounding temperature are within 1 percent of each other.
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Noting that the error involved in reading the Heisler charts is typically at least a
few percent, the lumped system analysis in this case may yield just as accurate
results with less effort.

The heat transfer surface area of the plate is 24, where A Is the face area of
the plate (the plate transfers heat through both of its surfaces), and the volume
of the plate is V = (2L)A, where L is the half-thickness of the plate. The expo-
nent b used in the lumped system analysis is determined to be

_hA;  h(24)
pC,V ~ pC,(2LA) pC,L
_ 120 W/m? - °C
(8530 kgmeJ(SSU Jkg - °C)(0.02 m)

b

= 0.00185 5!

Then the temperature of the plate at £ = 7 min = 420 s is determined from

re)-1. @) =500 00185 stxa20)
T,—-T. ¢ ~— 7 20-s00 ¢ |
It yields
T(t)=279°C

which is practically identical to the result obtained above using the Heisler
charts. Therefore, we can use lumped system analysis with confidence when the
Biot number is sufficiently small.
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: EXAMPLE 4-5 Cooling of a Long
I Stainless Steel Cylindrical Shaft

: A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes out
1 of an oven at a uniform temperature of 600°C (Fig. 4-21). The shaft is then al-
I lowed to cool slowly in an environment chamber at 200°C with an average heat
I transfer coefficient of h = 80 W/mZ - °C. Determine the temperature at the cen-
! ter of the shaft 45 min after the start of the cooling process. Also, determine
: the heat transfer per unit length of the shaft during this time period.

T. =200°C
h =80 W/m?-°C

Stainless steel
shaft

T}:(SIIK}"C D=20cm

FIGURE 4-21
Schematic for Example 4-35.
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SOLUTION A long cylindrical shaft at 600°C is allowed to cool slowly. The cen-
ter temperature and the heat transfer per unit length are to be determined.
Assumptions 1 Heat conduction in the shaft is one-dimensional since it is long
and it has thermal symmetry about the centerline. 2 The thermal properties of
the shaft and the heat transfer coefficient are constant. 3 The Fourier number
157 > 0.2 s0 that the one-term approximate solutions are applicable.
Properties The properties of stainless steel 304 at room temperature
are k = 14.9 Wim - °C, p = 7900 kg/m?, C, = 477 Jkg - °C, and
a = 3.95 X 10°% m?s (Table A-3). More accurate results can be obtained by
Using properties at average femperature.

Analysis The temperature within the shaft may vary with the radial distance r
as well as time, and the temperature at a specified location at a given time can
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be determined from the Heisler charts. Moting that the radius of the shaft is
r, = 0.1 m, from Fig. 4—-14 we have

1k 14.0 W/m - °C _ 186
Bi  hr, (80 W/mZ - “C)O0.1 m) T, — T.

ot (3.95 X 1076 m%/s)(45 < 60 s) T, — 7. 040
T2 0.1 m)? - 107

and

T, = T. + 04T, — T.) = 200 + 0.4(600 — 200) = 360°C

Therefore, the center temperature of the shaft will drop from &600°C to 360°C
in 45 min.

To determine the actual heat transfer, we Tirst need to calculate the maximum
heat that can be transferred from the cylinder, which is the sensible energy of
the cylinder relative to its environment. Taking L = 1 m,

m = pV = p"rrrr,z L = (7900 kgf]]13)'1Tl:0.] m)*(1 m) = 248.2 kg
COmax = MC(T. — T = (248.2 kg(0.477 kl/kg - “CW600 — 200)°C
= 47,354 kJ

The dimensionless heat transfer ratio is determined from Fig. 4-14c¢ for a long
cylinder to be

.11
B e sa o

h? or . e
k—f _ Bi%r — (0.537)2(1.07) — 0.300 | €

= 0.62

Therefore,
O = 0.620,.. = 0.62 X (47,354 kJ) = 29360 k]

which is the total heat transfer from the shaft during the first 45 min of
the cooling.

ALTERNATIVE SOLUTION We could also solve this problem using the one-term
solution relation instead of the transient charts. First we find the Biot number

- o (80 W/m? - “CHWO.1 m) o
LSS 14.0 W/m - °C =Ly

The coefficients A; and A; for a cylinder corresponding to this Bi are deter-
mined from Table 4—-1 to be

A, = 0.970, A, = 1.122

Substituting these values into Eq. 4-14 gives

T, —T.

——= Ale—)._f-r — 1.122 097020107 — .41

(_}D:
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and thus

T,=T.+ 04UT; — T.) = 200 + 0.41(600 — 200) = 364°C

The value of J;(A;) for A; = 0.970 is determined from Table 4-2 to be 0.430.
Then the fractional heat transfer is determined from Eq. 4-18 to be

Q Ji(Ay)

0.430
=1-26 =
QITIELX !

x, =1—2X0.41m—0.636

and thus

0 = 0.6360,... = 0.636 X (47,354 kJ) = 30,120 kJ

Discussion The slight difference between the two results is due to the reading
error of the charts.
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TRANSIENT HEAT CONDUCTION IN SEMI-
INFINITE SOLIDS

o0

Plane
surface

Schematic of a semi-infinite body.

For short periods of time, most bodies
can be modeled as semi-infinite solids
since heat does not have sufficient time
to penetrate deep into the body.

Semi-infinite solid: An idealized
body that has a single plane surface
and extends to infinity in all
directions.

The earth can be considered to be a
semi-infinite medium in determining

the variation of temperature near its

surface.

A thick wall can be modeled as a
semi-infinite medium if all we are
interested in is the variation of
temperature in the region near one
of the surfaces, and the other
surface is too far to have any impact
on the region of interest during the
time of observation.
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Analytical solution for the case of constant temperature T, on the surface

e . T 10T
Differential equation: =
ox @ di
Boundary conditions: 10,1y =T, and T(x — oo, =T,
Initial condition: I(x,0)=T,
X
Similarity variable: =
. Gt 0T 14T X
—S =, ad m=—+
d°T T o Vaat
= =9
d? Ty oT dTom  x  dT

ot dn at  op\/aar AN

10)=17; and T(n—x) =T, 9T dTom 1 dT

— a - S
=% = 2_,_ e du = erf(n) = 1 — erfc(n) w0 aar
li= 1 Val 0*T _d (aT> on 1 d°T
T ax>  dn \dx/) ax 4at dn*
erf(n) = 2 ?e’_“:(h-r error ! : . K
Vo function Transformation of variables
. In the derivatives of the
erfe(n) = 1 — - =@ Compleme_ntary heat conduction e_aquatlon
VA error function by the use of chain rule. 38



1.0 I /|.__...-‘-—
=08 z
'3.: | —
ab]
= 0.6 7
% - //\} erf(n) = ij e~uf du _
£ 0.4 7|70
—
) —
ﬂ CHZ/

0.0 | | | | |

0.0 05 1.0 1.5 20 2.5 3.0
n

Error function is a standard
mathematical function, just like the
sine and cosine functions, whose

value varies between 0 and 1.

—kCye™

TABLE 4-4
The complementary error function

7 erfc (n) 7 erfc (n) 7 erfc (n)
0.00 1.00000 | 0.38 0.5910 | 0.76 0.2825
0.02 0.9774 0.40 0.5716 | 0.78 0.2700
0.04 0.9549 0.42 0.5525 | 0.80 0.2579
0.06 0.9324 0.44 0.5338 | 0.82 0.2462
0.08 0.9099 0.46 0.5153 | 0.84 0.2349
0.10 0.8875 0.48 04973 | 0.86 0.2239
0.12 0.8652 0.50 0.4795 | 0.88 0.2133
0.14 0.8431 0.52 0.4621 0.90 0.2031
0.16 0.8210 0.54 0.4451 0.92 0.1932
0.18 0.7991 0.56 0.4284 | 0.94 0.1837
0.20 0.7773 0.58 0.4121 0.96 0.1746
0.22 0.7557 0.60 0.3961 0.98 0.165H8
0.24 0.7343 0.62 0.3806 1.00 0.1573
0.26 0.7131 0.64 0.3654 1.02 0.1492
0.28 0.6921 0.66 0.3506 1.04 0.1413
0.30 0.6714 0.68 0.3362 1.06 0.1339
0.32 0.6509 0.70 0.3222 1.08 0.1267
0.34 0.6306 0.72 0.3086 1.10 0.1198
0.36 0.6107 0.74 0.2953 1.12 0.1132

] k(T, — T,

Vdatlq=0 \ ot
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Case 1: Specified Surface Temperature, 7. = constant Analytical
solutions for

Tx, t) — T, | d o k(T, —T) different
= erlc — an [\I) = —
T.— T, '\ at 950 \rat boundary

conditions on

Case 2: Specified Surface Heat Flux, ¢; = constant. the surface

1 [dat X’ N
Tx,r) — T, = 1 |—exp | —— | — xerfc —
(| N7 | T e

Case 3: Convection on the Surface, {h(r} =h|T_— T(0,0)].

I(x,n — T, \ X hx  hat) X h\ at
= eric +

— exp + erfc
I.—T, 2V at koK NVat K

Case 4: Energy Pulse at Surface, ¢, = constant.

X

e, .
i
kK il dat 40

Ix, 1) =T, =



0.6

0.4

0.0

0.0

erfc(n)

Dimensionless
temperature distribution
for transient conduction
In a semi-infinite solid
whose surface is
maintained at a constant
temperature T..
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100 100
80 80
60
- $
~ 4p ~ 40
20 0.1h 20
0.01 h \’\4
ﬂ \.. I L '; D I T
0 0.2 0.4 0.6 0.8 | 2 0.6 0.8
/_. Distance from surface x. m /_.. Distance from surface x, m
Ti=0°C L Ti=0°C
T,= 100°C 4, = 7000 W/m?
(@) Specified surface temperature, T, = constant. (b) Specified surface heat flux, g, = constant.

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 107> m?s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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r°c
& 3

0.2 0.4 0.6 0.8
l/** Distance from surface x, m
T.. = 100°C T;=0°C
h=220W/m?-°C

{c) Convection at the surface

100

80

s
f~
20
0
-

e,= 1.7%107 J/m?

0.2 0.4 0.6 0.8
Distance from surface x, m

T;=0°C

{cf) Energy pulse at the surface, ¢, = constant

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 107> m?s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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solid initially at temperature T, subjected to convection to an
environment at T,, with a convection heat transfer coefficient of h.



Contact of Two Semi-Infinite Solids

When two large bodies A and B, initially at
uniform temperatures T, ; and Ty ; are
brought into contact, they instantly achieve
temperature equality at the contact
surface.

If the two bodies are of the same material,
the contact surface temperature is the
arithmetic average, T, = (T, ;+ T3 )/2.

If the bodies are of different materials, the

surface temperature T, will be different Contact of two semi-infinite solids of
than the arithmetic average. different initial temperatures.
, , ka(Ts — Ta))  kp(Ts — Tpy)  Tay— 1 [(kpcy)p
dsA = 4sp — — — = — 7 T N\
5 V mrayt \ rapt Iy — Tp; \ (kpcp)a

—

V (kpc,)aTy; + V (kpc,)pTp; The interface temperature of two bodies
o brought into contact is dominated by the

Ts T
Vikpey)s + V (kpey)p body with the larger kpc,,.

EXAMPLE: When a person with a skin temperature of 35°C touches an aluminum
block and then a wood block both at 15°C, the contact surface temperature will be
15.9°C in the case of aluminum and 30°C in the case of wood.
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EXAMPLE 4-6 Minimum Burial Depth of Water Pipes to Avoid
Freezing

In areas where the air temperature remains below 0°C for prolonged periods of
time, the freezing of water in underground pipes is a major concern. Fortu-
nately, the soil remains relatively warm during those periods, and it takes weeks
for the subfreezing temperatures to reach the water mains in the ground. Thus,
the soil effectively serves as an insulation to protect the water from subfreezing
temperatures in winter.

The ground at a particular location is covered with snow pack at —10°C for a
continuous period of three months, and the average soil properties at that loca-
tion are k= 0.4 W/m - °C and a = 0.15 x 10~° m?/s (Fig. 4-24). Assuming an
initial uniform temperature of 15°C for the ground, determine the minimum
burial depth to prevent the water pipes from freezing.

[ Te=-10C

- Tr= ISQC
FIGURE 4-24
Schematic for Example 4-6.
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SOLUTION The water pipes are buried in the ground to prevent freezing. The
minimum burial depth at a particular location is to be determined.
Assumptions 1 The temperature in the soil is affected by the thermal condi-
tions at one surface only, and thus the soil can be considered to be a semi-
infinite medium with a specified surface temperature of —10°C. 2 The thermal
properties of the soil are constant.

Properties The properties of the soil are as given in the problem statement.
Analysis The temperature of the soil surrounding the pipes will be 0°C after

three months in the case of minimum burial depth. Therefore, from Fig. 423,
we have

hv ot .
2 = oo (since i — =)
p— x p—
T -1, 0—(10 _ (5T 374G 0%
-7 15 — (—10)

We note that
t = (90 days)(24 h/day) (3600 s/h) = 7.78 =< 10%s

and thus

x =2 Var =2 X 0.36V(0.15 X 10 °mZ/s)(7.78 X< 10°s) = 0.77 m

Therefore, the water pipes must be buried to a depth of at least 77 cm to avoid
freezing under the specified harsh winter conditions.

ALTERNATIVE SOLUTION The solution of this problem could also be deter-
mined from Eq. 4-24:

Tix.t)— T,
T, — T,

5 r

. ( x ) 0 — 15
= erfc —_—

'x —
Vol —10 — 15 )_0'60

= erfc(
2V af .

The argument that corresponds to this value of the complementary error func-
tion is determined from Table 4—3 to be £ = 0.37. Therefore,

x =26Var =2 X 037(0.15 X 10° m¥/s)7.78 X 10°s) = 0.80m

Again, the slight difference is due to the reading error of the chart.
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TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

« Using a superposition approach called the product solution, the transient
temperature charts and solutions can be used to construct solutions for the two-
dimensional and three-dimensional transient heat conduction problems
encountered in geometries such as a short cylinder, a long rectangular bar, a
rectangular prism or a semi-infinite rectangular bar, provided that all surfaces of
the solid are subjected to convection to the same fluid at temperature T_, with the
same heat transfer coefficient h, and the body involves no heat generation.

« The solution in such multidimensional geometries can be expressed as the
product of the solutions for the one-dimensional geometries whose intersection
IS the multidimensional geometry.

T‘_{. :r:x.

h h T, /—i\ The temperature in a short
. h cylinder exposed to

e ToRe E:::I'*r Heat cznvectionarom all surfaces
A 4" T(rx.f) P

transfer —y5ries in both the radial and
axial directions, and thus

\_t/ heat is transferred in both

directions. 48
(a) Long cylinder (b) Short cylinder (two-dimensional)




The solution for a multidimensional geometry is the product of the solutions of the
one-dimensional geometries whose intersection is the multidimensional body.

The solution for the two-dimensional short cylinder of height a and radius r is
equal to the product of the nondimensionalized solutions for the one-dimensional
plane wall of thickness a and the long cylinder of radius r,.

(T{r.,r. f) — TI) B (T(,r. r) — TI) (T{r. 1) — TI)
_ short o _ plane _ infinite
T“- TI cylinder Tf- TI wall Tf- Tf

cylinder

T,

; e Plane wall
1

ll..- _\—-—.-'FM
|

\J

T A short cylinder of radius
r, and height a is the

L | intersection of a long
M—‘u r :l cylinder of radius r, and a
=~ o plane wall of thickness a.
ong

cylinder
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T(x,v,t)—T.
T — T rectangular — Hw;.ll{"*: I}Huull(,“** )

i bar

~ Plane wall p fy = I(x, 1) — T,
/ wall('x* ) — Ta’ _ Tm plane

wall
B // T(r.1) =T,
h 6'l::_i-’l('r" 1 = T. — Tm infinite

cylinder

/ //W—/( , b (T(x. f) — Tm)
sl — semi-infinite
_) semi-inf TE, — Tm Solid f
T l
¢ e
( / Plane wall
-

A long solid bar of rectangular profile
a x b is the intersection of two plane
walls of thicknesses a and b.
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The transient heat transfer for a two-dimensional
geometry formed by the intersection of two one-
dimensional geometries 1 and 2 is

Q}Jl];l‘i total. 2D Qm;l.\; [ Q“N-‘ 2 Q}”Rﬁ | -

Transient heat transfer for a three-dimensional body
formed by the intersection of three one-dimensional

bodies 1, 2, and 3 is
+| = — | =
QJH;I."& 2 Qmu.\; | 2

Qm;w total. 3D Qm;m ]
0 o\, _ ( Q ) “
N Qm;lx 3 - Qmux | Q”“" 2




Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and
exposed to convection from all surfaces to a medium at T

B(r, 1) = Gy(r, 1)
Infinite cylinder

J B

— —— r

Ox, 1, 1) = Oy (1. 1) Bieppiigr (X, 1)
Semi-infinite cylinder

o, | i

i, r. 1) = B (1. 1) By (2. 1)
Short cylinder

s T
kl \\\
f ™
/ |
| ]
"‘. '._‘
| &=—»X \
L1
III '.II
< |
W, _\\ |
\ -
e — -

O(x, 1) = Bhemiing (X 1)
Semi-infinite medium

. L

A

60, y.1)= H:;emj-lnf (x, 1) 'E'rz:emi-jnf (¥, 1)

Quarter-infinite medium

Bix. vy, z.0) =

'E'rsemi-lnf (x. 1) 'Hr;emj-lnf ':.."'~ f) 'E'r:;eml-jnf (Z.

Corner region of a large medium

I
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Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and exposed

to convection from all surfaces to a medium at T,

2L

8(.1.. F} = g'n't'i.’ll.ll:'ll'-' F}
Infinite plate (or plane wall)

Semi-infinite plate

8 |:.'|.'. _'l-'. ” = 8“ all |:.'|.'. ” Qfl‘."li.-i.lll" |: _"Ll'. .”

-
\-\.
A
\
b
M,
A
A
.‘l|_' f__f,\'— -
-
7’7
= Z
=
X
B(x, vz, 1) =

8-.» all (x, 1) E’:}sr:'-mi-inr' I:_'k‘. f) E’::ilsemi-inr'':":" )

Quarter-infinite plate

B(x, v, 1) =0 (x. 08, (w1

Infinite rectangular bar

£
e :1‘1 —
&
- T

B(x,v,z1) =
E;_j"-'rall (X, 1) tr,:jll-'rall ':“ ) E;_zlsr;"lni-inr''::' )
Semi-infinite rectangular bar

#(xyvz.0n =
B ot (X 1D By (0. 1) By (2,1
Rectangular parallelepiped
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EXAMPLE 4-7 Cooling of a Short Brass Cylinder

A short brass cylinder of diameter D = 10 cm and height H = 12 cm is initially
at a uniform temperature T, = 120°C. The cylinder is now placed in atmo-
spheric air at 25°C, where heat transfer takes place by convection, with a heat
transfer coefficient of h = 60 W/m? - °C. Calculate the temperature at (a) the
center of the cylinder and (b) the center of the top surface of the cylinder
15 min after the start of the cooling.

T,.=25°C
h =60 W/m?.°C

—|—

]

LTI

i — 120085
e |

FIGURE 4-28
Schematic for Example 4-7.
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SOLUTION A short cylinder is allowed to cool in atmospheric air. The temper-
atures at the centers of the cylinder and the top surface are to be determined.

Assumptions 1 Heat conduction in the short cylinder is two-dimensional, and
thus the temperature varies in both the axial x- and the radial r-directions. 2 The
thermal properties of the cylinder and the heat transfer coefficient are constant.
3 The Fourier number is T = 0.2 so that the one-term approximate solutions are
applicable.

Properties The properties of brass at room temperature are k = 110 W/m - °C
and o = 33.9 x 10~° m?/s (Table A-3). More accurate results can be obtained
by using properties at average temperature.

Analysis (a) This short cylinder can physically be formed by the intersection of
a long cylinder of radius r, = 5 cm and a plane wall of thickness 2L = 12 cm,
as shown in Fig. 4-28. The dimensionless temperature at the center of the
plane wall is determined from Figure 4-13a to be

3.39 X 1073 m¥s)(900 s
—at_{ O _ g 4g

I (0.06 m)? T(0.1)-T.
) Ouart(0, 1) = ——— =
k _ 110 W/m - °C i — T

- = — = =3
Bi AL (60 W/m? - °C)(0.06 m)

-
0.8
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Similarly, at the center of the cylinder, we have

3.39 > 107 m¥sW900 s
of _ ( W ) — 122

ry (0.05 m)* 6.0, 1y = L@D-T-_
1 _ k _ 110 W/m - °C _aeq7| O T, —T- '

Bi  Ar, (60 W/m2 - °C)(0.05 m)

Therefore,

T(O,0,t) — T..
T,‘ — 7. short

“ cylinder

= B0, 1) X 0.,(0, 1) = 0.8 X 0.5 = 0.4

and

To,0,t)y=7. +047T; — Ty =25 + 040120 — 25) = 63°C

This is the temperature at the center of the short cylinder, which is also the cen-
ter of both the long cylinder and the plate.

(£) The center of the top surface of the cylinder is still at the center of the long
cylinder (r = 0Q), but at the outer surface of the plane wall (x = L). Therefore,
we first need to find the surface temperature of the wall. Noting that x = L =
0.06 m,

£=0.06m=l
L~ 0.06m Tty To o0
1 _ k _ 110 W/m - °C T,—T.

_ = = = 30.6
Bi hi. (60 W/m~ - °CM0.06 m)

Then
_T&L T, T':L’”_ij T"_T"j — 0.98 % 0.8 = 0.784
Bwn]l(Le .I"} - T_:-—T-; - To — T . TE —Ty__ T : . - ’
Therefore,
T(L,0,1) —T.
T, T short = Owan(Z. £)0:,(0. 1) = 0.784 X 0.5 = 0.392
x = * eylinder

and

T(L,0,t) = T.. + 0.39(T, — T.) = 25 + 0.392(120 — 25) — 62.2°C

which is the temperature at the center of the top surface of the cylinder.
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EXAMPLE 4-8 Heat Transfer from a Short Cylinder

Determine the total heat transfer from the short brass cylinder (p = 8530
kg/m?, C, = 0.380 kJ/kg - °C) discussed in Example 4-7.

T,.=25°C
h =60 W/m?.°C

—|—

]

L

) |
S

!
T = 120°C
S
FIGURE 4-28
Schematic for Example 4-7.
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SOLUTION We first determine the maximum heat that can be transferred from
the cylinder, which is the sensible energy content of the cylinder relative to its
environment:

m = pV = pmr? L = (8530 kg/m*)m(0.05 m)*(0.06 m) = 4.02 kg
O = MC(T; — T.) = (4.02 kg)(0.380 kl/kg - °C)(120 — 25)°C = 145.1 kJ

Then we determine the dimensionless heat transfer ratios for both geometries.
For the plane wall, it is determined from Fig. 4-13c to be

1

Bi = /57 = 30 — 0-0327 . .
2 ) )
hkc;r = Bi*r = (0.0327)%(8.48) = 0.0091 (an plane

Similarly, for the cylinder, we have

infinite

( 0 = 0.47
2 = Bilr = (0.0272)2(12.2) = 0.0090 | \Qomax/J 0"

Then the heat transfer ratio for the short cylinder is, from Eq. 4-28,

0y~ (0 * ) [ (2,

! short cyl
=023 + 047(1 — 0.23) = 0.392

Therefore, the total heat transfer from the cylinder during the first 15 min of
cooling is

0 = 05920, = 0.592 X (145.1 kJ) = 85.9 kJ 58



EXAMPLE 4-9 Cooling of a Long Cylinder by Water

A semi-infinite aluminum cylinder of diameter D = 20 cm is initially at a uni-
form temperature T, = 200°C. The cylinder is now placed in water at 15°C
where heat transfer takes place by convection, with a heat transfer coefficient
of h = 120 W/m? - °C. Determine the temperature at the center of the cylinder
15 cm from the end surface 5 min after the start of the cooling.

| T.=15°C
| h =120 W/m2.°C

x=15cm

b -[I %
FIGURE 4-29
Schematic for Example 4-9.
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SOLUTION A semi-infinite aluminum cylinder is cooled by water. The tem-
perature at the center of the cylinder 15 cm from the end surface is to be
determined.

Assumptions 1 Heat conduction in the semi-infinite cylinder is two-
dimensional, and thus the temperature varies in both the axial x- and the radial
r-directions. 2 The thermal properties of the cylinder and the heat transfer co-
efficient are constant. 3 The Fourier number is T = 0.2 so that the one-term
approximate solutions are applicable.

Properties The properties of aluminum at room temperature are kK = 237
W/m - °Cand a = 9.71 x 10~ m?/s (Table A-3). More accurate results can be
obtained by using properties at average temperature.

Analysis This semi-infinite cylinder can physically be formed by the inter-
section of an infinite cylinder of radius r, = 10 cm and a semi-infinite medium,
as shown in Fig. 4-29.

60



We will solve this problem using the one-term solution relation for the cylin-
der and the analytic solution for the semi-infinite mMmedium. First we consider the
infinitely long cylinder and evaluate the Biot number:

Bi fir, (120 W/m?* - “Cy0.1 m) TLTo
R 237 W/m - °C -

The coefficients x; and A, for a cylinder corresponding to this Bi are deter-
mined from Table 4—1 to be Ay = 0.3126 and A4, = 1.0124. The Fourier num-
ber in this case is

ar _ (971 = 10 ° mA/sHS = 60 s)
2 (0.1 m)?2

3

= 2,91 = 0.2

- =

and thus the one-term approximation is applicable. Substituting these values
into Eq. 4—-14 gives
By — O, (0. £) — Ae 27 — 1.0124©31260°25D — . F62

The solution for the semi-infinite solid can be determined from

x hix F Zoer x P 5
1 O miindX. T = erfc (7,_3 — ex| (7 = == j[erfc ( — =F j:l
t{ > 2N ol e K =, 2N o K .

First we determine the various guantities in parentheses:

015 m

X
= = = — 0.44
£ 2N ot 2% 00Tl > 107 mEsiS >< 60 s)
v or (120 W/m? - PCHON.71 =< 10 5 m3/sW300 s) O.D8S
K o 237 Wi,/m - °C T
fix (120 W/m® - SCH0.15 m)
ko 237 W/m - °C = ALl
‘F"Rfﬁ_"" — (h ‘*ko"’j — (0.086)> — 0.0074
Substituting and evaluating the complemantary error Tunctions from Table 4—3,
emicindX. £ = 1 — erfc (0.44) + exp (00759 + 0.0074) erfc (0.44 + 0.086)
= 1 — 0.5338 + exp (D.0833) > 0.457
= 0D.96a3

NMow we apply the product solution to get

— Bcmisind(6. £)0, (0. 1) — 0963 >< 0.762 — 0.734

T(x, O, ) — T
I_'a' 7. s-l;n}i—infinil.n:
* cylinder

and

T(x,. 0. r)=T.. + 0.734(T; — T) =15 + 0.734(200 — 15) = 151°C

which is the temperature at the center of the cylinder 15 cm from the exposed
bottom surface.
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EXAMPLE 4-10 Refrigerating Steaks while Avoiding Frosthite

In a meat processing plant, 1-in.-thick steaks initially at 75°F are to be cooled
in the racks of a large refrigerator that is maintained at 5°F (Fig. 4-30). The
steaks are placed close to each other, so that heat transfer from the 1-in.-thick
edges is negligible. The entire steak is to be cooled below 45°F, but its temper-
ature is not to drop below 35°F at any point during refrigeration to avoid “frost-
bite.” The convection heat transfer coefficient and thus the rate of heat transfer
from the steak can be controlled by varying the speed of a circulating fan in-
side. Determine the heat transfer coefficient A that will enable us to meet both
temperature constraints while keeping the refrigeration time to a minimum. The
steak can be treated as a homogeneous layer having the properties p = 74.9
|bm/ft3, C, = 0.98 Btu/lbm - °F, k = 0.26 Btu/h - ft - °F, and a = 0.0035 ft2/h.

FIGURE 4-30
Schematic for Example 4-10.
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SOLUTION Steaks are to be cooled in a refrigerator maintained at 5°F. The
heat transfer coefficient that will allow cooling the steaks below 45°F while
avoiding frostbite is to be determined.

Assumptions 1 Heat conduction through the steaks is one-dimensional since
the steaks form a large layer relative to their thickness and there is thermal sym-
metry about the center plane. 2 The thermal properties of the steaks and the
heat transfer coefficient are constant. 3 The Fourier number is v = 0.2 so that
the one-term approximate solutions are applicable.

Properties The properties of the steaks are as given in the problem statement.
Analysis The lowest temperature in the steak will occur at the surfaces and
the highest temperature at the center at a given time, since the inner part will
be the last place to be cooled. In the limiting case, the surface temperature at
x= L = 0.5Iin. from the center will be 35°F, while the midplane temperature
is 45°F in an environment at 5°F. Then, from Fig. 4-13b, we obtain

x_05in. _
L 0.5in.

1 _ kK _ 5
T(L.t) —T. 35—5 —=—= =

T,  T. 45 — 5

which gives

1 k_026Btwh - ft - °F _ .
h=157= 150512f) _ +16Bwh-ft"-°F

Discussion The convection heat transfer coefficient should be kept below this
value to satisfy the constraints on the temperature of the steak during refriger-
ation. We can also meet the constraints by using a lower heat transfer coeffi-
cient, but doing so would extend the refrigeration time unnecessarily.



